Memetic Elitist Pareto Evolutionary Algorithm for Virtual Network Embedding

نویسنده

  • Ashraf A. Shahin
چکیده

Assigning virtual network resources to physical network components, called Virtual Network Embedding, is a major challenge in cloud computing platforms. In this paper, we propose a memetic elitist pareto evolutionary algorithm for virtual network embedding problem, which is called MEPE-VNE. MEPE-VNE applies a non-dominated sortingbased multi-objective evolutionary algorithm, called NSGA-II, to reduce computational complexity of constructing a hierarchy of non-dominated Pareto fronts and assign a rank value to each virtual network embedding solution based on its dominance level and crowding distance value. Local search is applied to enhance virtual network embedding solutions and speed up convergence of the proposed algorithm. To reduce loss of good solutions, MEPEVNE ensures elitism by passing virtual network embedding solutions with best fitness values to next generation. Performance of the proposed algorithm is evaluated and compared with existing algorithms using extensive simulations, which show that the proposed algorithm improves virtual network embedding by increasing acceptance ratio and revenue while decreasing the cost incurred by substrate network.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Memetic Elitist Pareto Evolutionary Algorithm of Three-Term Backpropagation Network for Classification Problems

Evolutionary Algorithms (EAs) are population based algorithms, which allow for simultaneous exploration of different parts in the Pareto optimal set. This paper presents Memetic Elitist Pareto Evolutionary Algorithm of Three-Term Backpropagation Network for Classification Problems. This memetic elitist Pareto evolutionary algorithm is called METBP and used to evolve Three-term Backpropagation (...

متن کامل

Memetic Elitist Pareto Differential Evolution algorithm based Radial Basis Function Networks for classification problems

This paper presents a new multi-objective evolutionary hybrid algorithm for the design of Radial Basis Function Networks (RBFNs) for classification problems. The algorithm, MEPDEN, Memetic Elitist Pareto evolutionary approach based on the Non-dominated Sorting Differential Evolution (NSDE) multiobjective evolutionary algorithm which has been adapted to design RBFNs, where the NSDE algorithm is ...

متن کامل

Design of Virtual Topologies using the Elitist Team of Multiobjective Evolutionary Algorithms

Designing virtual topologies is necessary to obtain maximum performance of optical networks. In this paper the routing and wavelength assignation (RWA) is computed using an elitist team of multiobjective evolutionary algorithms, which proposes converting the original RWA problem into a problem of traditional routing, thereby modifying the graph that represents the optical network. The Elitist T...

متن کامل

A Multi-Objective Evolutionary Algorithm of Neural Network for Medical Diseases Problems

This paper presents an evolutionary algorithm for solving multi-objective optimization problems-based artificial neural network (ANN). The multi-objective evolutionary algorithm used in this study is genetic algorithm while ANN used is radial basis function network (RBFN). The proposed algorithm named memetic elitist Pareto non-dominated sorting genetic algorithm-based RBFN (MEPGAN). The propos...

متن کامل

Memetic pareto differential evolutionary artificial neural networks to determine growth multi-classes in predictive microbiology

The main objective of this research is to automatically design Artificial Neural Network models with sigmoid basis units for multiclassification tasks in predictive microbiology. The classifiers obtained achieve a double objective: a high classification level in the dataset and high classification levels for each class. The Memetic Pareto Differential Evolution Neural Network chosen to learn th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computer and Information Science

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2015